Proceedings of the 2011 American Control Conference 2011
DOI: 10.1109/acc.2011.5990779
|View full text |Cite
|
Sign up to set email alerts
|

State estimation for a class of nonlinear differential games using differential neural networks

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2011
2011
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 8 publications
0
2
0
1
Order By: Relevance
“…同时, 随着计算智能的发展, 神经网络方法、协同进化 算法以及强化学习等数值求解方法也被引入微分对策 中, García和Murano [54] Anderson和Grazier [58] 将航天器运动方程在圆参考 轨道处线性化, 使得协态方程(9)可以被解析表达. 再 将最优机动表达式(10)在剩余捕获时间τ=0处泰勒展 开, 忽略三阶以上高阶项, 代入到状态方程式(2)中, 得 到了航天器平面追逃界栅的解析表达式 [58] .…”
Section: 总体来讲 近年来对追逃微分对策的研究中 不完unclassified
“…同时, 随着计算智能的发展, 神经网络方法、协同进化 算法以及强化学习等数值求解方法也被引入微分对策 中, García和Murano [54] Anderson和Grazier [58] 将航天器运动方程在圆参考 轨道处线性化, 使得协态方程(9)可以被解析表达. 再 将最优机动表达式(10)在剩余捕获时间τ=0处泰勒展 开, 忽略三阶以上高阶项, 代入到状态方程式(2)中, 得 到了航天器平面追逃界栅的解析表达式 [58] .…”
Section: 总体来讲 近年来对追逃微分对策的研究中 不完unclassified
“…For example, in [18], differential neural networks are used for the identification of dynamical systems; references [19][20][21] design differential neural network observers for adaptive state estimation; the works of [22,23] propose neural network controllers for several applications; and [24] shows a compendium of differential neural networks for identification, state estimation, and control of nonlinear systems. Also, [25] treats the state estimation problem for affine nonlinear differential games using a differential neural network observer, and in [26], a nearly optimal Nash equilibrium for classes of deterministic and stochastic nonlinear differential games is obtained using differential neural networks.…”
Section: Main Contributionmentioning
confidence: 99%
“…Currently, differential neural networks (DfNN) have proven to be an effective tool in the identification, state estimation and control of complex nonlinear systems (see [1], [5] and [6]). …”
Section: Introductionmentioning
confidence: 99%