2022
DOI: 10.1111/sjos.12619
|View full text |Cite
|
Sign up to set email alerts
|

State estimation for aoristic models

Abstract: Aoristic data can be described by a marked point process in time in which the points cannot be observed directly but are known to lie in observable intervals, the marks. We consider Bayesian state estimation for the latent points when the marks are modelled in terms of an alternating renewal process in equilibrium and the prior is a Markov point process. We derive the posterior distribution, estimate its parameters and present some examples that illustrate the influence of the prior distribution. The model is … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1
1

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 32 publications
0
0
0
Order By: Relevance