A new class of models for inhomogeneous spatial point processes is introduced. These locally scaled point processes are modifications of homogeneous template point processes, having the property that regions with different intensities differ only by a scale factor. This is achieved by replacing volume measures used in the density with locally scaled analogues defined by a location-dependent scaling function. The new approach is particularly appealing for modelling inhomogeneous Markov point processes. Distance-interaction and shot noise weighted Markov point processes are discussed in detail. It is shown that the locally scaled versions are again Markov and that locally the Papangelou conditional intensity of the new process behaves like that of a global scaling of the homogeneous process. Approximations are suggested that simplify calculation of the density, for example, in simulation. For sequential point processes, an alternative and simpler definition of local scaling is proposed.
Aoristic data can be described by a marked point process in time in which the points cannot be observed directly but are known to lie in observable intervals, the marks. We consider Bayesian state estimation for the latent points when the marks are modelled in terms of an alternating renewal process in equilibrium and the prior is a Markov point process. We derive the posterior distribution, estimate its parameters and present some examples that illustrate the influence of the prior distribution. The model is then used to estimate times of occurrence of interval censored crimes. KEYWORDS: alternating renewal process, aoristic data, criminological data, marked temporal point process, Markov chain Monte Carlo methods, Markov point process state estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.