2018
DOI: 10.1049/iet-epa.2017.0242
|View full text |Cite
|
Sign up to set email alerts
|

State of charge prediction of supercapacitors via combination of Kalman filtering and backpropagation neural network

Abstract: Supercapacitors are increasingly applied to the field of electric vehicles. Although the state of charge (SOC) directly shows the remaining capacity of supercapacitors in an energy management system, vehicle drivers also require the changes of supercapacitors in the future for driving reference. How to predict SOC of supercapacitors has become a pressing problem. In order to solve the above problem, a method combining backpropagation (BP) neural network with the Kalman filtering algorithm is proposed to predic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
14
0
1

Year Published

2018
2018
2023
2023

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 34 publications
(15 citation statements)
references
References 27 publications
0
14
0
1
Order By: Relevance
“…Ultrakapacitors sangat cocok untuk digunakan dalam kondisi aplikasi yang ekstrim karena suhunya yang lebih luas dan siklus masa pakai yang lama dalam siklus pelepasan muatan (Pavkovic, dkk, 2014). Akhirnya, ultrakapacitors dapat diisi dan dikosongkan secara mendalam, sehingga risiko pengisian berlebih dan pemakaian berlebih pada ultrakapacitor lebih kecil daripada perangkat penyimpanan energi lainnya (Houlian & Gongbo, 2018).…”
Section: Pendahuluanunclassified
“…Ultrakapacitors sangat cocok untuk digunakan dalam kondisi aplikasi yang ekstrim karena suhunya yang lebih luas dan siklus masa pakai yang lama dalam siklus pelepasan muatan (Pavkovic, dkk, 2014). Akhirnya, ultrakapacitors dapat diisi dan dikosongkan secara mendalam, sehingga risiko pengisian berlebih dan pemakaian berlebih pada ultrakapacitor lebih kecil daripada perangkat penyimpanan energi lainnya (Houlian & Gongbo, 2018).…”
Section: Pendahuluanunclassified
“…Backpropagation (BP) NN is firstly proposed by Rumelhard and McClelland in 1986 ( Rumelhart et al., 1986 ). It can be regarded as a typical multilayer feedforward NN, and its topology mainly includes an input layer, a few hidden layers, and an output layer ( Houlian and Gongbo, 2018 ). The error back propagation algorithm is mostly widely accepted in guided learning algorithms.…”
Section: Machine-learning-based Soh Predictionmentioning
confidence: 99%
“…The high accuracy of model requires massive complicated parameter computations and excessive design cost. Other than the model-based SOC estimation, the artificial neural networks (ANNs) are well suited for non-linear systems while applying to SOC estimation [17][18][19]. The battery characteristics such as current, voltage, and temperature are independent variables.…”
Section: Introductionmentioning
confidence: 99%