Non-small cell lung cancer (NSCLC) is a leading threat to human lives with high incidence and mortality. Circular RNAs (circRNAs) were reported to play important roles in human cancers. The purpose of this study was to investigate the role of circ_0005962 and explore the underlying functional mechanisms. The expression of circ_0005962, miR-382-5p and pyruvate dehydrogenase kinase 4 (PDK4) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and cell apoptosis were assessed by cell counting kit-8 (CCK-8) assay and flow cytometry assay, respectively. The protein levels of Beclin 1, light chain3 (LC3-II/LC3-I), PDK4, Cleaved Caspase 3 (C-caspase 3) and proliferating cell nuclear antigen (PCNA) were examined using western blot analysis. Glycolysis was determined according to the levels of glucose consumption and lactate production. The interaction between miR-382-5p and circ_0005962 or PDK4 was predicted by the online tool CircInteractome or starbase and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Xenograft model was constructed to investigate the role of circ_0005962 in vivo. circ_0005962 expressed with a high level in NSCLC tissues and cells. Circ_0005962 knockdown inhibited proliferation, autophagy, and glycolysis but promoted apoptosis in NSCLC cells. MiR-382-5p was targeted by circ_0005962, and its inhibition reversed the role of circ_0005962 knockdown. Besides, PDK4, a target of miR-382-5p, was regulated by circ_0005962 through miR-382-5p, and its overexpression abolished the effects of miR-382-5p reintroduction. Circ_0005962 knockdown suppressed tumor growth in vivo. Circ_0005962 knockdown restrained cell proliferation, autophagy, and glycolysis but stimulated apoptosis through modulating the circ_0005962/miR-382-5p/PDK4 axis. Our study broadened the insights into understanding the mechanism of NSCLC progression.