We have measured fragmentation branching ratios of neutral C(n)H and C(n)H(+) cations produced in high velocity (4.5 a.u) collisions between incident C(n)H(+) cations and helium atoms. Electron capture gives rise to excited neutral species C(n)H and electronic excitation to excited cations C(n)H(+). Thanks to a dedicated setup, based on coincident detection of all fragments, the dissociations of the neutral and cationic parents were recorded separately and in a complete way. For the fragmentation of C(n)H, the H-loss channel is found to be dominant, as already observed by other authors. By contrast, the H-loss and C-loss channels equally dominate the two-fragment break up of C(n)H(+) species. For these cations, we provide the first fragmentation data (n>2). Results are also discussed in the context of astrochemistry.