“…They range from simple 4 linear models to complex deterministic or stochastic techniques. The most common approaches include the simple nearest neighbor method by data transfer (Bárdossy and Pegram, 2014;Giustarini et al, 2016), interpolation techniques (Hughes and Smakhtin, 1996;Pappas et al, 2014;Peterson and Western, 2018;Piazza et al, 2015;Rees, 2008;Teegavarapu, 2014), autoregressive models (Bennis et al, 1997;Tencaliec et al, 2015), simple and multiple regressions (Dumedah and Coulibaly, 2011;Hirsch, 1979;1982;Miaou, 1990;Woodhouse et al, 2006), classification and regression trees (Giustarini et al, 2016;Sidibe et al, 2018), recession methods (Gyau-Boakye and Schultz, 1994), recursive models (Lambert, 1969), nonlinear and storage models (Coulibaly and Baldwin, 2005;Dawdy and O'Donnell, 1965), satellite data applications (Papadakis et al, 1993), dynamic state-space models (Amisigo and Van De Giesen, 2005;Berendrecht and van Geer, 2016), and various forms of artificial neural networks (Coulibaly and Evora, 2007;Dastorani et al, 2010;Elshorbagy et al, 2002;Khalil et al, 2001;Panu et al, 2000;Tfwala et al, 2013) among others (Bárdossy and Pegram, 2014;Dumedah and Coulibaly, 2011;Gyau-Boakye and Schultz, 1994;Harvey et al, 2012;Sidibe et al, 2018). Different studies provided a review of these methods…”