The threshold voltage drifts induced by Positive Bias Temperature Instability (PBTI) and Negative Bias Temperature Instability (NBTI) weaken NMOS and PMOS, respectively. These long-term aging threshold voltage drifts degrade SRAM cell stability, margin and performance. This paper presents a low area overhead Adaptive Body Bias (ABB) circuit that compensates BTI aging effects and also improves performance of an aged SRAM cell. The proposed circuit uses a control circuit and word line voltage to control the voltage applied to the body of 6T SRAM cell's transistors such that the BTI effect dependency of threshold voltage is reduced. In the worst case, the proposed ABB reduces the HOLD SNM degradation by 6.85%, READ SNM degradation by 12.24%, WRITE margin degradation by 2.16%, READ delay by 28.68% and WRITE delay by 32.61% compared to the conventional SRAM cell at 10 8 seconds aging time.