Income and budget data seldom are measured in the same dataset. In order to make simulations that need both, one requires a reliable procedure to merge an income and a budget survey into one combined dataset. This paper contains the comparison and evaluation of five different techniques to impute expenditures into income datasets: parametric estimation of Engel curves, nonparametric estimation, both constrained and unconstrained matching using a distance function and grade correspondence. After a detailed description of the methods as well as a comparison of the main pros and cons, their effectiveness is tested upon an artificially split data file. In general, the parametric and non-parametric estimation seem to yield the best results, generating imputed values that are closest to the observed values for the budget shares.