An alternated 1:1 chain compound of a Mn(III) salen derivative and the TCNQ monoradical was synthesized: [Mn(5-TMAMsaltmen)(TCNQ)](ClO(4))(2) (1) (TCNQ=tetracyano-p-quinodimethane; 5-TMAMsaltmen=N,N'-(1,1,2,2-tetramethylethylene) bis(5-trimethylammoniomethylsalicylideneiminato)). Compound 1 has a zigzag chain structure packed with adjacent chains with an interchain MnMn distance of over 8 Angatrom. As compound 1 contains no crystallization solvent, the void spaces between chains are occupied only by ClO(4) (-) counter ions. Compound 1 has a structure reminiscent of what has been observed in the family of Mn(III)(porphyrin)-TCNE or -TCNQ compounds reported previously by Miller and co-workers and we demonstrate herein its unique single-chain magnet behavior among this family of compounds. The direct current (dc) magnetic measurements established the one-dimensional nature of compound 1 with an antiferromagnetic exchange coupling, J/k(B) approximately -96 K, between the Mn(III) ion and TCNQ radical and with an activated correlation length (Delta(xi)=26.5 K) at low temperatures (50-15 K). The slow relaxation of the magnetization was shown in compound 1 by the field hysteresis of the magnetization observed below 3.5 K (with a coercive field up to 14 kOe at 1.8 K). Single-crystal magnetization measurements demonstrated the uniaxial symmetry of this compound and allowed an estimation of the anisotropy field, H(a) approximately 97 kOe. The absence of magnetic ordered phase or spin-glass behavior was established by heat-capacity calorimetry measurements that exhibit no abnormality of C(p) between 0.5 K and 10 K. The study of the magnetization relaxation by combined ac (alternating current) and dc techniques showed that compound 1 possesses a single relaxation time (tau). As the consequence of the finite size of the chain, the temperature dependence of tau presents two activated regimes above and below 4.5 K with tau(01)=2.1 x 10(-10) s, Delta(tau1)=94.1 K and tau(02)=6.8 x 10(-8) s and Delta(tau2)=67.7 K, respectively. The detailed analysis of these dynamics properties together with the correlation length, allows an unambiguous demonstration of the single-chain magnet behavior in 1.