A description of the status of the art of experimental and theoretical investigations of local crystalline structures of tetrahedron ordered ternary and quaternary semiconducting alloys is presented. Experimental EXAFS data and FTIR analysis are summarized and analyzed using both the Rigid Network Cations theoretical model and the Strained-tetrahedra model. Internal preferences of ion pairs in ternary and quaternary alloys are discussed. Several ternary systems of different structures show ideal quasi-canonical Bernoulli distributions, while others are characterized by extreme preferences in which one, several or even all configurations are depressed or even lacking. The results demonstrate that the validity of the Bernoulli distribution is limited and not fulfilled in many systems. This article is an expanded version of the scientific reports presented at the