Proceedings of the 9th International Natural Language Generation Conference 2016
DOI: 10.18653/v1/w16-6624
|View full text |Cite
|
Sign up to set email alerts
|

Statistical Natural Language Generation from Tabular Non-textual Data

Abstract: Most of the existing natural language generation (NLG) techniques employing statistical methods are typically resource and time intensive. On the other hand, handcrafted rulebased and template-based NLG systems typically require significant human/designer efforts. In this paper, we proposed a statistical NLG technique which does not require any semantic relational knowledge and takes much less time to generate output text. The system can be used in those cases where source non-textual data are in the form of t… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
1

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
3
1

Relationship

0
10

Authors

Journals

citations
Cited by 16 publications
(11 citation statements)
references
References 21 publications
0
10
0
1
Order By: Relevance
“…Androutsopoulos et al (2013) and Duma and Klein (2013) focused on generating descriptive language for Ontologies and RDF triples. Most recent work utilize neural networks on data-to-text generation (Mahapatra et al, 2016;Wiseman et al, 2017;Kaffee et al, 2018;Freitag and Roy, 2018;Qader et al, 2018;Dou et al, 2018;Yeh et al, 2018;Jhamtani et al, 2018;Liu et al, 2017bLiu et al, , 2019Peng et al, 2019;Dušek et al, 2019). Some closely relevant work also focused on the table-to-text generation.…”
Section: Related Workmentioning
confidence: 99%
“…Androutsopoulos et al (2013) and Duma and Klein (2013) focused on generating descriptive language for Ontologies and RDF triples. Most recent work utilize neural networks on data-to-text generation (Mahapatra et al, 2016;Wiseman et al, 2017;Kaffee et al, 2018;Freitag and Roy, 2018;Qader et al, 2018;Dou et al, 2018;Yeh et al, 2018;Jhamtani et al, 2018;Liu et al, 2017bLiu et al, , 2019Peng et al, 2019;Dušek et al, 2019). Some closely relevant work also focused on the table-to-text generation.…”
Section: Related Workmentioning
confidence: 99%
“…Penelitian yang berfokus pada pembangkitan representasi tekstual berdasarkan data non tekstual secara otomatis telah banyak dilakukan [2]- [8]. Penelitian tersebut secara umum menggunakan pendekatan Natural Language Generation (NLG) untuk berbagai domain masalah menggunakan berbagai pendekatan dan metode, di antaranya pembangkitan tekstual ramalan cuaca berbasis metode Case Based Reasoning (CBR) dilakukan dalam [2], kajian penerapan pengetahuan geografis dari web untuk membangkitkan deskripsi jaringan sensor hidrologi bagi publik [3], dan pembangkitan teks dari masukan nontekstual (dataset tabular) [4]. Secara khusus untuk bidang kesehatan, pembangkitan ringkasan tekstual dari data medis neonatal di ruang ICU menggunakan pendekatan datato-text dilakukan dalam [5], pembangkitan ringkasan rawat inap pasien dalam [6], pembangkitan interpretasi tekstual berbahasa Indonesia berdasarkan data grafik pengawasan kesehatan satu garis menggunakan metode bigram dalam [7], dan pembangkitan interpretasi berbahasa Indonesia berdasarkan data grafik pengawasan kesehatan dua garis menggunakan metode template dalam [8].…”
Section: Pendahuluanunclassified
“…For reasons discussed below, we here focus on the pipeline architecture common in earlier NLG work (Reiter, 2007;Mahapatra et al, 2016), consisting of document planning, micro planning, and surface realization stages.…”
Section: Related Workmentioning
confidence: 99%