Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Seasonal precipitation forecasting is vital for weather-sensitive sectors. Global Circulation Models (GCM) routinely produce ensemble Seasonal Climate Forecasts (SCFs) but suffer from issues like low forecast resolution and skills. To address these issues in this study, we introduce a post-processing method, Quantile Ensemble Bayesian Model Averaging (QEBMA). It utilises quantiles from a GCM ensemble forecast to create a pseudo-ensemble forecast. Through their reasonable linear relationships with observations, each pseudo-member connects a hurdle distribution with a point mass at zero for dry months and a gamma distribution for wet months. These distributions are mixed to construct a forecast probability distribution with their weights, proportional to the quantiles’ historical forecast performance. QEBMA is applied to three GCMs, including GloSea5 from the United Kingdom, ECMWF from Europe and ACCESS-S1 from Australia, for monthly precipitation forecasts in 32 locations across four climate zones in Australia. Leave-one-month-out cross-validation results illustrate that QEBMA enhances forecast skills compared to raw GCMs and other post-processing techniques, including quantile mapping and Extended Copula Post-Processing (ECPP), for forecast lead time of 0 to 2 months, based on five metrics. The skill improvements achieved by QEBMA are often statistically significant, particularly when compared to raw GCM forecasts across the 32 study locations. Among these post-processing models, only QEBMA consistently outperforms the SCF benchmark climatology, offering a promising alternative for improving seasonal precipitation forecasts.
Seasonal precipitation forecasting is vital for weather-sensitive sectors. Global Circulation Models (GCM) routinely produce ensemble Seasonal Climate Forecasts (SCFs) but suffer from issues like low forecast resolution and skills. To address these issues in this study, we introduce a post-processing method, Quantile Ensemble Bayesian Model Averaging (QEBMA). It utilises quantiles from a GCM ensemble forecast to create a pseudo-ensemble forecast. Through their reasonable linear relationships with observations, each pseudo-member connects a hurdle distribution with a point mass at zero for dry months and a gamma distribution for wet months. These distributions are mixed to construct a forecast probability distribution with their weights, proportional to the quantiles’ historical forecast performance. QEBMA is applied to three GCMs, including GloSea5 from the United Kingdom, ECMWF from Europe and ACCESS-S1 from Australia, for monthly precipitation forecasts in 32 locations across four climate zones in Australia. Leave-one-month-out cross-validation results illustrate that QEBMA enhances forecast skills compared to raw GCMs and other post-processing techniques, including quantile mapping and Extended Copula Post-Processing (ECPP), for forecast lead time of 0 to 2 months, based on five metrics. The skill improvements achieved by QEBMA are often statistically significant, particularly when compared to raw GCM forecasts across the 32 study locations. Among these post-processing models, only QEBMA consistently outperforms the SCF benchmark climatology, offering a promising alternative for improving seasonal precipitation forecasts.
Seasonal precipitation forecasting is vital for weather-sensitive sectors. Global Circulation Models (GCM) routinely produce ensemble Seasonal Climate Forecasts (SCFs) but suffer from issues like low forecast resolution and skills. To address these issues in this study, we introduce a post-processing method, Quantile Ensemble Bayesian Model Averaging (QEBMA). It utilises quantiles from a GCM ensemble forecast to create a pseudo-ensemble forecast. Through their reasonable linear relationships with observations, each pseudo-member connects a hurdle distribution with a point mass at zero for dry months and a gamma distribution for wet months. These distributions are mixed to construct a forecast probability distribution with their weights, proportional to the quantiles’ historical forecast performance. QEBMA is applied to three GCMs, including GloSea5 from the United Kingdom, ECMWF from Europe and ACCESS-S1 from Australia, for monthly precipitation forecasts in 32 locations across four climate zones in Australia. Leave-one-month-out cross-validation results illustrate that QEBMA enhances forecast skills compared to raw GCMs and other post-processing techniques, including quantile mapping and Extended Copula Post-Processing (ECPP), for forecast lead time of 0 to 2 months, based on five metrics. The skill improvements by QEBMA are often statistically significant, especially compared to raw GCM forecasts. Among these post-processing models, only QEBMA consistently outperforms the SCF benchmark climatology, offering a promising alternative for improving seasonal precipitation forecasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.