2019
DOI: 10.1029/2018wr024028
|View full text |Cite
|
Sign up to set email alerts
|

Statistical Postprocessing of Water Level Forecasts Using Bayesian Model Averaging With Doubly Truncated Normal Components

Abstract: Accurate and reliable probabilistic forecasts of hydrological quantities like runoff or water level are beneficial to various areas of society. Probabilistic state‐of‐the‐art hydrological ensemble prediction models are usually driven with meteorological ensemble forecasts. Hence, biases and dispersion errors of the meteorological forecasts cascade down to the hydrological predictions and add to the errors of the hydrological models. The systematic parts of these errors can be reduced by applying statistical po… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
6
0
1

Year Published

2020
2020
2023
2023

Publication Types

Select...
10

Relationship

0
10

Authors

Journals

citations
Cited by 17 publications
(7 citation statements)
references
References 59 publications
0
6
0
1
Order By: Relevance
“…More recently, post‐processing techniques such as machine learning (ML) have emerged as a popular alternative method for enhancing the performance of hydrological simulation (He et al., 2021). ML post‐processing contributes to the reduction of systematic errors and improves the accuracy of climate or hydrological simulations and projections (Baran et al., 2019; Gong et al., 2022; Hemri et al., 2015). ML can enhance the modeling performance of physical processes (Bonavita et al., 2021; Ma et al., 2020), enabling researchers to acquire new insights on climate change impacts.…”
Section: Introductionmentioning
confidence: 99%
“…More recently, post‐processing techniques such as machine learning (ML) have emerged as a popular alternative method for enhancing the performance of hydrological simulation (He et al., 2021). ML post‐processing contributes to the reduction of systematic errors and improves the accuracy of climate or hydrological simulations and projections (Baran et al., 2019; Gong et al., 2022; Hemri et al., 2015). ML can enhance the modeling performance of physical processes (Bonavita et al., 2021; Ma et al., 2020), enabling researchers to acquire new insights on climate change impacts.…”
Section: Introductionmentioning
confidence: 99%
“…Among them, BMA is one of the most commonly and widely used methods to generate reliable model prediction. In recent years, BMA has been widely used in runoff simulation and prediction [ 11 , 32 , 33 ]. Huo et al [ 34 ] used the numerical model of physical mechanism and BMA to simulate the flood process in semi humid areas.…”
Section: Introductionmentioning
confidence: 99%
“…Selain melakukan koreksi bias dengan gQM, tahapan utama pada penelitian ini adalah menerapkan BMA pada RAW model ECS4. BMA adalah metode post processing statistik yang menghasilkan prediksi probabilistik dari prediksi ensemble dalam bentuk fungsi kepadatan peluang atau Probability Density Function (PDF) prediktif (Abraham and Puthiyidam, 2016; Baran et al, 2019;Ji et al, 2019;Liu et al, 2019;Song et al, 2018;Xu et al, 2019 Normal (Raftery et al, 2005), curah hujan harian dengan gamma nol (Sloughter et al, 2007), dan kecepatan angin dengan gamma (Sloughter et al, 2010). Menurut Gneiting (2014) dan Sloughter et al (2007), distribusi PDF prediktif BMA untuk curah hujan harian adalah gamma nol.…”
Section: Kalibrasi Prediksi Ensemble Dengan Bayesian Model Averagingunclassified