We investigate experimentally the statistical properties of active and passive scalar fields in turbulent Rayleigh-Bénard convection in water, at Ra approximately 10;{10} . Both the local concentration of fluorescence dye and the local temperature are measured near the sidewall of a rectangular cell. It is found that, although they are advected by the same turbulent flow, the two scalars distribute differently. This difference is twofold, i.e., both the quantities themselves and their small-scale increments have different distributions. Our results show that there is a certain buoyant scale based on time domain, i.e., the Bolgiano time scale t_{B} , above which buoyancy effects are significant. Above t_{B} , temperature is active and is found to be more intermittent than concentration, which is passive. This suggests that the active scalar possesses a higher level of intermittency in turbulent thermal convection. It is further found that the mixing of both scalar fields are isotropic for scales larger than t_{B} even though buoyancy acts on the fluid in the vertical direction. Below t_{B} , temperature is passive and is found to be more anisotropic than concentration. But this higher degree of anisotropy is attributed to the higher diffusivity of temperature over that of concentration. From the simultaneous measurements of temperature and concentration, it is shown that two scalars have similar autocorrelation functions and there is a strong and positive correlation between them.