“…Our goal is to find an absorber/mask carrier combination which allows for high resolution and good pattern placement accuracy, yet is compatible with standard IC batch-oriented processing. The search for a suitable mask blank and absorber combination for deep x-ray lithography (DXRL) benefits from the experience of XRL technology [14][15][16][17]. The relevant properties of the mask materials are listed in table 1 and figure 1.…”
Section: Background In Mask Materials and Processing Optionsmentioning
The requirements for deep x-ray lithography (DXRL) masks are reviewed and a recently developed cost effective mask fabrication process is described. The review includes a summary of tabulated properties for materials used in the fabrication of DXRL masks. X-ray transparency and mask contrast are calculated for material combinations using simulations of exposure at the Advanced Light Source (ALS) at Berkeley, and compared to the requirements for standard x-ray lithography (XRL) mask technology. Guided by the requirements, a cost-effective fabrication process for manufacturing high contrast masks for DXRL has been developed. Thick absorber patterns () on a thin silicon wafer (m) were made using contact printing in thick positive (Hoechst 4620) and negative (OCG 7020) photoresist and subsequent gold electrodeposition. Gold was deposited using a commercially available gold sulphite bath with low current density and good agitation. The resultant gold films were fine-grained and stress-free. Replication of such masks into thick acrylic sheets was performed at the ALS.
“…Our goal is to find an absorber/mask carrier combination which allows for high resolution and good pattern placement accuracy, yet is compatible with standard IC batch-oriented processing. The search for a suitable mask blank and absorber combination for deep x-ray lithography (DXRL) benefits from the experience of XRL technology [14][15][16][17]. The relevant properties of the mask materials are listed in table 1 and figure 1.…”
Section: Background In Mask Materials and Processing Optionsmentioning
The requirements for deep x-ray lithography (DXRL) masks are reviewed and a recently developed cost effective mask fabrication process is described. The review includes a summary of tabulated properties for materials used in the fabrication of DXRL masks. X-ray transparency and mask contrast are calculated for material combinations using simulations of exposure at the Advanced Light Source (ALS) at Berkeley, and compared to the requirements for standard x-ray lithography (XRL) mask technology. Guided by the requirements, a cost-effective fabrication process for manufacturing high contrast masks for DXRL has been developed. Thick absorber patterns () on a thin silicon wafer (m) were made using contact printing in thick positive (Hoechst 4620) and negative (OCG 7020) photoresist and subsequent gold electrodeposition. Gold was deposited using a commercially available gold sulphite bath with low current density and good agitation. The resultant gold films were fine-grained and stress-free. Replication of such masks into thick acrylic sheets was performed at the ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.