The Madison plasma dynamo experiment (MPDX) is a novel, versatile, basic plasma research device designed to investigate flow driven magnetohydrodynamic instabilities and other high-b phenomena with astrophysically relevant parameters. A 3 m diameter vacuum vessel is lined with 36 rings of alternately oriented 4000 G samarium cobalt magnets, which create an axisymmetric multicusp that contains $14 m 3 of nearly magnetic field free plasma that is well confined and highly ionized (>50%). At present, 8 lanthanum hexaboride (LaB 6 ) cathodes and 10 molybdenum anodes are inserted into the vessel and biased up to 500 V, drawing 40 A each cathode, ionizing a low pressure Ar or He fill gas and heating it. Up to 100 kW of electron cyclotron heating power is planned for additional electron heating. The LaB 6 cathodes are positioned in the magnetized edge to drive toroidal rotation through J Â B torques that propagate into the unmagnetized core plasma. Dynamo studies on MPDX require a high magnetic Reynolds number Rm > 1000, and an adjustable fluid Reynolds number 10 < Re < 1000, in the regime where the kinetic energy of the flow exceeds the magnetic energy (M 2 A ¼ ðv=v A Þ 2 > 1). Initial results from MPDX are presented along with a 0-dimensional power and particle balance model to predict the viscosity and resistivity to achieve dynamo action. V C 2014 AIP Publishing LLC.