Search and rescue operation is performed to save human life, for example during natural disasters, unfortunate incidents on the land, in the deepwater, or lakes. There were incidents happened to the search and rescue crew during the operation although they were well trained. A new method using robotic technology is important to reduce the crew's risk during operations. This research proposed a development of an autonomous surface vessel for search and rescue operations for deepwater applications. The proposed autonomous surface vessel is equipped with a global positioning system (GPS) and underwater sensor to search for the victims, black box, debris, or other evidence on the surface and underwater. The vessel was designed with monitoring and control via radio frequency wireless communication. The autonomous surface vessel prototype was developed and tested successfully with the telemetry at the ground station. The ground station acts as the control centre of the overall system. Results showed the vessel successfully operated autonomously. The operator at the ground station was able to monitor the sensor data and control the vessel's manoeuvre according to the created path. The telemetry coverage to monitor the water surroundings and control the vessel's manoeuvre was around 100 meters.