Malware detection in Internet of Things (IoT) devices is a great challenge, as these devices lack certain characteristics such as homogeneity and security. Malware is malicious software that affects a system as it can steal sensitive information, slow its speed, cause frequent hangs, and disrupt operations. The most common malware types are adware, computer viruses, spyware, trojans, worms, rootkits, key loggers, botnets, and ransomware. Malware detection is critical for a system's security. Many security researchers have studied the IoT malware detection domain. Many studies proposed the static or dynamic analysis on IoT malware detection. This paper presents a survey of IoT malware evasion techniques, reviewing and discussing various researches. Malware uses a few common evasion techniques such as user interaction, environmental awareness, stegosploit, domain and IP identification, code obfuscation, code encryption, timing, and code compression. A comparative analysis was conducted pointing various advantages and disadvantages. This study provides guidelines on IoT malware evasion techniques.