2013
DOI: 10.1145/2432622.2432628
|View full text |Cite
|
Sign up to set email alerts
|

Steiner Tree Approximation via Iterative Randomized Rounding

Abstract: The Steiner tree problem is one of the most fundamental NP -hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to 1.55 [Robins and Zelikovsky 2005]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2 [Rajagopalan… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

3
289
1
3

Year Published

2014
2014
2020
2020

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 261 publications
(296 citation statements)
references
References 50 publications
3
289
1
3
Order By: Relevance
“…We have proven that our algorithm always finds a solution F to I and a feasible solution (ξ, ν, µ) to D(I), where both solutions satisfy (5). By the duality of LPs, the right-hand side of (5) cannot exceed the optimal value of I; thus, F is an optimal solution to I.…”
Section: Lemma 4 F and ξ Satisfy (5)mentioning
confidence: 89%
“…We have proven that our algorithm always finds a solution F to I and a feasible solution (ξ, ν, µ) to D(I), where both solutions satisfy (5). By the duality of LPs, the right-hand side of (5) cannot exceed the optimal value of I; thus, F is an optimal solution to I.…”
Section: Lemma 4 F and ξ Satisfy (5)mentioning
confidence: 89%
“…Existem outros algoritmos para esse problema que obtêm fatores de aproximação melhores para esse problema, sendo que o menor fator conhecidoé 1,39, de Byrka et al (2013). Para um problema de minimização, queremos um fator de aproximação tão pequeno quanto possível.…”
Section: Bem Próximo Doótimounclassified
“…Por exemplo, obter uma 2-aproximação para o problema daárvore de Steineré tão simples quanto calcular aárvore geradora de terminais de custo mínimo (Gilbert e Pollak, 1968), enquanto obter uma 1,39-aproximação envolve estudar famílias de soluções para um problema restrito (Borchers e Du, 1997) e o desenvolvimento de técnicas avançadas de arredondamento de programa linear (Byrka et al, 2013).…”
Section: Algoritmo 4: Algoritmo De Deslocamentounclassified
“…The group Steiner tree problem generalizes two important problems: The Steiner tree problem and the set cover problem. The Steiner tree problem is one of the most important NP-hard problems in combinatorial optimization that admits an approximation algorithm with a constant approximation ratio [4,5]. Actually, it is NP-hard for approximating it within a ratio of less than 96/95 [6].…”
Section: E∈e(t ) W(e)mentioning
confidence: 99%