The Steiner tree problem is one of the most fundamental NP -hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to 1.55 [Robins and Zelikovsky 2005]. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP relaxation of Steiner tree with integrality gap smaller than 2 [Rajagopalan and Vazirani 1999]. In this article we present an LP-based approximation algorithm for Steiner tree with an improved approximation factor. Our algorithm is based on a, seemingly novel, iterative randomized rounding technique. We consider an LP relaxation of the problem, which is based on the notion of directed components. We sample one component with probability proportional to the value of the associated variable in a fractional solution: the sampled component is contracted and the LP is updated consequently. We iterate this process until all terminals are connected. Our algorithm delivers a solution of cost at most ln(4) + ε < 1.39 times the cost of an optimal Steiner tree. The algorithm can be derandomized using the method of limited independence. As a by-product of our analysis, we show that the integrality gap of our LP is at most 1.55, hence answering the mentioned open question.
The Steiner tree problem is one of the most fundamental NP-hard problems: given a weighted undirected graph and a subset of terminal nodes, find a minimum-cost tree spanning the terminals. In a sequence of papers, the approximation ratio for this problem was improved from 2 to the current best 1.55 [Robins,. All these algorithms are purely combinatorial. A long-standing open problem is whether there is an LP-relaxation for Steiner tree with integrality gap smaller than 2 [Vazirani, .In this paper we improve the approximation factor for Steiner tree, developing an LP-based approximation algorithm. Our algorithm is based on a, seemingly novel, iterative randomized rounding technique. We consider a directedcomponent cut relaxation for the k-restricted Steiner tree problem. We sample one of these components with probability proportional to the value of the associated variable in the optimal fractional solution and contract it. We iterate this process for a proper number of times and finally output the sampled components together with a minimum-cost terminal spanning tree in the remaining graph. Our algorithm delivers a solution of cost at most ln(4) times the cost of an optimal k-restricted Steiner tree. This directly implies a ln(4) + ε < 1.39 approximation for Steiner tree.As a byproduct of our analysis, we show that the integrality gap of our LP is at most 1.55, hence answering to the * Extended abstract.
A popular method in combinatorial optimization is to express polytopes P , which may potentially have exponentially many facets, as solutions of linear programs that use few extra variables to reduce the number of constraints down to a polynomial. After two decades of standstill, recent years have brought amazing progress in showing lower bounds for the so called extension complexity, which for a polytope P denotes the smallest number of inequalities necessary to describe a higher dimensional polytope Q that can be linearly projected on P .However, the central question in this field remained wide open: can the perfect matching polytope be written as an LP with polynomially many constraints?We answer this question negatively. In fact, the extension complexity of the perfect matching polytope in a complete n-node graph is 2 Ω(n) . By a known reduction this also improves the lower bound on the extension complexity for the TSP polytope from 2 Ω( √ n) to 2 Ω(n) .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.