Background
Hypoxic-ischemia (HI), infection/inflammation and reperfusion injury are pathogenic factors of encephalopathy of prematurity, which involves maturational/neurotrophic disturbances in oligodendrocyte progenitor cells (OPC) and neurons/axons. Mesenchymal stem cells (MSCs) might facilitate neuroserpin production, which is neurotrophic for OPC/neurons. This study investigated MSC effects on developmental disturbances after lipopolysaccharide (LPS)-sensitized HI/reperfusion (LHIR) injury and the relation to neuroserpin expression.
Methods
Postnatal day 2 (P2) rat pups received intraperitoneal LPS (5 µg/kg) injection followed by HI (unilateral common-carotid-artery ligation and 6.5% oxygen exposure for 90 min) and post-HI reperfusion (release of ligation). MSCs (5 × 104 cells) were injected into the left lateral ventricle at 24 h post-LHIR. Neurological tests and brain tissue examinations were performed between P5 and P56.
Results
After LHIR injury, MSC therapy significantly reduced cell death in subplate neurons, attenuated axonal damage, and facilitated synaptophysin synthesis in the cortex. It also alleviated OPC maturation arrest and preserved the complexity of myelinated axons in the white matter, leading to cognitive, motor and behavioral functional improvements. These beneficial effects were linked to restored neuroserpin expression in subplate neurons.
Conclusions
MSC therapy ameliorated developmental disturbances after LHIR injury through protection of neuroserpin expression, serving as a promising approach for treating encephalopathy of prematurity.
Impact
Neuroserpin is secreted by subplate neurons and may regulate the development of neurons and oligodendrocyte-axon contact for myelination in the premature brain.
LPS-sensitized hypoxic-ischemia/reperfusion (LHIR) injury caused the developmental disturbances of neurons/axons and oligodendrocytes, and lowered neuroserpin levels in a neonatal rat model simulating encephalopathy of prematurity.
Mesenchymal stem cell therapy alleviated the developmental disturbances after LHIR injury through protection of neuroserpin expression in subplate neurons, offering a new perspective on potential treatment for encephalopathy of prematurity.