Abstract:The generated resist based defects on the template in addition to the presence of particles and contaminants is critical for ultraviolet curing of nanoimprint lithographic fabrication. This procedure is proven to be suitable for advanced resist material design under the process conditions. Nanoimprint resist material containing an ultraviolet reactive fluorine surfactant was developed to modify the fundamental surface interactions between resists and the template for defect reduction in nanoimprint patterning replication. The developed acrylate type nanoimprint resist material containing 4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoro-2-hydroxyundecyl acrylate as an ultraviolet reactive fluorine surfactant, indicated excellent patterning dimensional accuracy by minimizing surface free energy, and having the effect of improving the generated resist based defect numbers on the template, with a 500 nm contact hole and 2 μm line patterns, in the replication of 20 nanoimprint process cycles. This desirable concept using an ultraviolet reactive fluorine surfactant with an acrylate group in the acrylate type nanoimprint resist material is one of the most promising processes ready to be incorporated into mass fabrication in the next generation of electronic devices.