Featured Application: This paper introduces the application of metallic 3D printing technology to fabricate K-band-stepped, double-ridged horn antennas. The proposed antennas feature comparable performance with commercial counterparts with lower cost and a reduced turnaround time.Abstract: This paper presents K-band-stepped, double-ridged square horn antennas fabricated by metallic 3D printing technology in copper (85% copper and 15% stannum) and aluminum alloy (89.5% aluminum, 10% silicon, and 0.5% magnesium). Compared with the popular dielectric 3D-printed horn antenna, the metallic counterpart features better mechanical robustness in terms of material. Moreover, the metallic horns are printed in one piece in one run, different from the dielectric horns that are printed in split pieces and electroplated, they simplify the process and thus result in reduced cost. The agreement between the simulation and measurement results verified the antenna's performance. Both the 3D-printed copper and aluminum alloy antenna have an impedance bandwidth across the K-band, with a maximum gain of 13.23 dBi @ 25 GHz and 13.5 dBi @ 24 GHz, respectively. The metallic, 3D-printed horn antennas are preferable alternatives to replace traditionally-fabricated antennas.