Heterogeneous catalysts of inexpensive and reusable transition-metal are attractive alternatives to homogeneous catalysts; the relatively low activity of transition-metal nanoparticles has become the main hurdle for their practical applications. Here, the de novo design of a Mott–Schottky-type heterogeneous catalyst is reported to boost the activity of a transition-metal nanocatalyst through electron transfer at the metal/nitrogen-doped carbon interface. The Mott–Schottky catalyst of nitrogen-rich carbon-coated cobalt nanoparticles (Co@NC) was prepared through direct polycondensation of simple organic molecules and inorganic metal salts in the presence of g-C3N4 powder. The Co@NC with controllable nitrogen content and thus tunable Fermi energy and catalytic activity exhibited a high turnover frequency (TOF) value (8.12 mol methyl benzoate mol–1 Co h–1) for the direct, base-free, aerobic oxidation of benzyl alcohols to methyl benzoate; this TOF is 30-fold higher than those of the state-of-the-art transition-metal-based nanocatalysts reported in the literature. The presented efficient Mott–Schottky catalyst can trigger the synthesis of a series of alkyl esters and even diesters in high yields.
Synthesizing cost-efficient and robust bifunctional electrocatalysts for both neutral and alkaline water splitting is highly desired, but still remains a great challenge due to the sluggish hydrogen/oxygen evolution reaction (HER/OER) kinetics. Currently, noble Pt, Ru, and Ir-based catalysts are the most efficient ones, but their high cost and scarcity greatly restrict their broad applications. [2] Therefore, enormous efforts have been made toward developing suitable and cheaper catalysts with earthabundant materials for commercial applications. In the past years, a large number of non-noble-metal based catalysts, including transition metal phosphides, nitrides, carbides, and oxides, had good development prospects in catalytic fields. [3] Among these, transition metal phosphides (TMPs) such as Fe x P, Co x P, and Ni x P are promising and considered as the most probable alternatives to the noblemetal based catalysts due to their abundant reserves, high stability, non-toxicity, fast charge transfer, and electrical conductivity. [4] However, many studies demonstrated that TMPs exhibited excellent hydrogen evolution reaction (HER) activity (it may be attributed to the reported hydrogenase-like catalytic mechanism), [5] but poor oxygen evolution reaction (OER) activity. So, it is an urgent to improve their catalytic behavior. There are two effective strategies to solve the above problems:Constructing cost-efficient and robust bifunctional electrocatalysts for both neutral and alkaline water splitting is highly desired, but still affords a great challenge, due to sluggish hydrogen/oxygen evolution reaction (HER/OER) kinetics. Herein, an in situ integration engineering strategy of oxygen-vacancy and core-shell heterojunction to fabricate an anemone-like CoP@CoOOH core-shell heterojunction with rich oxygen-vacancies supported on carbon paper (CoP@CoOOH/CP), is described. Benefiting from the synergy of CoP core and oxygen-vacancy-rich CoOOH shell, the as-obtained CoP@CoOOH/CP catalyst displays low overpotentials at 10 mA cm -2 for HER (89.6 mV/81.7 mV) and OER (318 mV/200 mV) in neutral and alkaline media, respectively. Notably, a two-electrode electrolyzer, using CoP@CoOOH/CP as bifunctional catalyst to achieve 10 mA cm -2 , only needs low-cell voltages in neutral (1.65 V) and alkaline (1.52 V) electrolyte. Besides, systematically experimental and theoretical results reveal that the core-shell heterojunction efficiently accelerates the catalytic kinetics and strengthens the structural stability, while rich oxygen-vacancies efficiently decrease the kinetic barrier and activation energy, and reduce the energy barrier of the rate-determiningstep for OER intermediates, thus intrinsically boosting OER performance. This work clearly demonstrates that oxygen-vacancy and core-shell heterojunction engineering provide an effective strategy to design highly-efficient non-precious, bi-functional electrocatalysts for pH-universal water splitting.The ORCID identification number(s) for the author(s) of this article can be found under h...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.