The aim of this study was to analyse the effects of eliprodil, a noncardiac drug with neuroprotective properties, on the cardiac repolarisation under in vitro circumstances, under normal conditions and after the attenuation of the ‘repolarisation reserve’ by blocking the inward rectifier potassium current (IK1) current with BaCl2.
In canine right ventricular papillary muscle by applying the conventional microelectrode technique, under normal conditions, eliprodil (1 μM) produced a moderate reverse rate‐dependent prolongation of the action potential duration (7.4±1.5, 8.9±2.1 and 9.9±1.8% at cycle lengths of 300, 1000 and 5000 ms, respectively; n=9).
This effect was augmented in preparations where IK1 was previously blocked by BaCl2 (10 μM). BaCl2 alone lengthened APD in a reverse frequency‐dependent manner (7.0±1.3, 14.2±1.6 and 28.1±2.1% at cycle lengths of 300, 1000 and 5000 ms, respectively; n=8). When eliprodil (1 μM) was administered to these preparations, the drug induced a marked further lengthening relative to the APD values measured after the administration of BaCl2 (12.5±1.0, 17.6±1.5 and 20.5±0.9% at cycle lengths of 300, 1000 and 5000 ms, respectively; n=8).
In the normal Langendorff‐perfused rabbit heart, eliprodil (1 μM) produced a significant QTc prolongation at 1 Hz stimulation frequency (12.7±1.8%, n=9). After the attenuation of the ‘repolarisation reserve’ by the IK1 blocker BaCl2 (10 μM), the eliprodil‐evoked QTc prolongation was greatly enhanced (28.5±7.9%, n=6). In two out of six Langendorff preparations, this QTc lengthening degenerated into torsade de pointes ventricular tachycardia.
Eliprodil significantly decreased the amplitude of rapid component of the delayed rectifier potassium current (IKr), but slow component (IKs), transient outward current (Ito) and IK1 were not considerably affected by the drug when measured in dog ventricular myocytes by applying the whole‐cell configuration of the patch‐clamp technique.
The results indicate that eliprodil, under normal conditions, moderately lengthens cardiac repolarisation by inhibition of IKr. However, after the attenuation of the normal ‘repolarisation reserve’, this drug can induce marked QT interval prolongation, which may result in proarrhythmic action.
British Journal of Pharmacology (2004) 143, 152–158. doi: