Despite decades of research, malaria remains a global health crisis. Current subunit vaccine approaches do not provide efficient long-term, sterilizing immunity against Plasmodium infections in humans. Conversely, whole parasite vaccinations with their larger array of target antigens have conferred long lasting sterilizing protection to humans. Similar studies in rodent models of malaria reveal that CD8+ T cells play a critical role in liver-stage immunity after whole parasite vaccination. However, it is unknown whether all CD8+ T cell specificities elicited by whole parasite vaccination contribute to protection, an issue of great relevance for enhanced subunit vaccination. Here we show that robust CD8+ T cell responses of similar phenotype are mounted following prime-boost immunization against Plasmodium berghei GAP5041-48, S20318-325, TRAP130-138 or CSP252-260 protein-derived epitopes in mice, but only CSP252-260- and TRAP130-138-specific CD8+ T cells provide sterilizing immunity and reduce liver parasite burden following sporozoite challenge. Further, CD8+ T cells specific to sporozoite surface-expressed CSP and TRAP proteins, but not the intracellular GAP50 and S20 proteins, are efficiently recognized by sporozoite-infected hepatocytes in vitro. These results suggest that 1) protection-relevant antigenic targets, regardless of their immunogenic potential, must be efficiently presented by infected hepatocytes for CD8+ T cells to eliminate liver-stage Plasmodium infection and 2) proteins expressed on the surface of sporozoites may be good target antigens for protective CD8+ T cells.