As a result of increased support and the diligent application of new and conventional anti-malaria tools, significant reductions in malaria transmission are being accomplished. Historical and current evolutionary responses of vectors and parasites to malaria interventions demonstrate that it is unwise to assume that a limited suite of tools will remain effective indefinitely, thus efforts to develop new interventions should continue. This collection of manuscripts surveys the prospects and technical challenges for applying a novel tool, the sterile insect technique (SIT), against mosquitoes that transmit malaria. The method has been very successful against many agricultural pest insects in area-wide programs, but demonstrations against malaria vectors have not been sufficient to determine its potential relative to current alternatives, much of which will hinge ultimately upon cost. These manuscripts provide an overview of current efforts to develop SIT and identify key research issues that remain.
EpilogueThis supplement represents the collective efforts of many specialists in the field. As such, it provides an important resource for all who seek to understand the biology and behaviour of the Anopheles gambiae complex, and not solely for those with interests in the use of the sterile insect technique (SIT). The coverage is impressively broad, covering the problematic areas of reproductive number (how can we get reliable estimates of R 0 ?), mating behaviour and male competitiveness, the maintenance of polymorphisms in laboratory-reared specimens, ingenious methods for sex separation, screening mosquitoes for release to reduce transmission of viruses and other potential mosquito pathogens, alternative methods to radiation sterilization for inducing sterility and the essential details of radiation biology of mosquitoes. The authors are to be congratulated on the thoroughness of their approach which, in part, reflects the knowledge and experience gained during the many years of use of SIT for pests of agricultural importance and the large scale and highly successful programmes for the eradication of the New World screwworm, Cochliomyia hominivorax [1].SIT has helped eradicate the melon fly from Okinawa, stopped the invasion of southern Mexico by the Mediterranean fruit fly and helped eradicate the same species from Chile and southern Peru with enormous economic benefits for these countries, since their fruits can be imported elsewhere without quarantine. Bollworm moths and the codling moth have also been effectively controlled by employing SIT within an area-wide integrated programme [1].However, SIT has not been without its sceptics and outright critics. During the screwworm eradication programme in Texas, it was argued that the decline of the screwworm population owed more to climatic factors than to the SIT programme, an interpretation that was roundly rejected [2]. Without the SIT programme, it is certainly possible that Africa would also have been blighted