We introduce the notion of "separation of conditions" meaning that a description of statistical data obtained from experiments, performed under a set of different conditions, allows for a decomposition such that each partial description depends on mutually exclusive subsets of these conditions. Descriptions that allow a separation of conditions are shown to entail the basic mathematical framework of quantum theory. The Stern-Gerlach and the Einstein-Podolsky-Rosen-Bohm experiment with three, respectively nine possible outcomes are used to illustrate how the separation of conditions can be used to construct their quantum theoretical descriptions. It is shown that the mathematical structure of separated descriptions implies that, under certain restrictions, the time evolution of the data can be described by the von Neumann/Schrödinger equation.