Protein-protein interactions (PPIs) play a central role in most biological processes, and therefore represent an important class of targets for therapeutic development. However, disrupting PPIs using small-molecule inhibitors (SMIs) is challenging and often deemed as "undruggable." We developed a cell-based functional assay for highthroughput screening to identify SMIs for steroid receptor coactivator-3 (SRC-3 or AIB1), a large and mostly unstructured nuclear protein.Without any SRC-3 structural information, we identified SI-2 as a highly promising SMI for SRC-3. SI-2 meets all of the criteria of Lipinski's rule [Lipinski et al. (2001) Adv Drug Deliv Rev 46(1-3):3-26] for a drug-like molecule and has a half-life of 1 h in a pharmacokinetics study and a reasonable oral availability in mice. As a SRC-3 SMI, SI-2 can selectively reduce the transcriptional activities and the protein concentrations of SRC-3 in cells through direct physical interactions with SRC-3, and selectively induce breast cancer cell death with IC 50 values in the low nanomolar range (3-20 nM), but not affect normal cell viability. Furthermore, SI-2 can significantly inhibit primary tumor growth and reduce SRC-3 protein levels in a breast cancer mouse model. In a toxicology study, SI-2 caused minimal acute cardiotoxicity based on a hERG channel blocking assay and an unappreciable chronic toxicity to major organs based on histological analyses. We believe that this work could significantly improve breast cancer treatment through the development of "first-in-class" drugs that target oncogenic coactivators.steroid receptor coactivator | small-molecule inhibitor | breast cancer | drug development | protein-protein interactions P rotein-protein interactions (PPIs) play a central role in most biological processes, and therefore represent an important class of targets for therapeutic development (1). Biologics-based therapeutics, such as antibodies, exemplify success in PPI regulation (2). However, antibodies usually can only be applied to protein targets on cell surfaces because of their impermeability to plasma membranes (2). Although small-molecule drugs can readily cross membranes, applying small-molecule inhibitors (SMIs) to disrupt PPIs is a challenging task because ∼750-1,500 Å 2 of protein surface area is involved at the interface of PPIs (3), which is too large for SMIs to cover. In addition, these interacting protein surfaces do not have pocket-like small-molecule binding sites (2). Therefore, these PPI sites are deemed as "undruggable" targets for SMIs. The Holy Grail of drug development is to render small molecules the power of biologics to regulate PPIs.The current strategies for designing small-molecule PPI inhibitors primarily rely on the structural information of the protein targets (4). Clackson and Wells discovered that only a small set of residues at the PPI interface are critical for their interactions, known as "hot spots" (5). Therefore, current drug design for PPIs is mainly focused on small hot spots that can be covered by a dru...