Aquatic organisms utilizing attachment often contend with unpredictable environments that can dislodge them from substrates. To counter these forces, many organisms (e.g. fish, cephalopods) have evolved suction-based organs for adhesion. Morphology is diverse, with some disc shapes deviating from a circle to more ovate designs. Inspired by the diversity of multiple aquatic species, we investigated how bioinspired cups with different disc shapes performed in shear loading conditions. These experiments highlighted pertinent physical characteristics found in biological discs (regions of stiffness, flattened margins, a sealing rim), as well as ecologically relevant shearing conditions. Disc shapes of fabricated cups included a standard circle, ellipses, and other bioinspired designs. To consider the effects of sealing, these stiff silicone cups were produced with and without a soft rim. Cups were tested using a force-sensing robotic arm, which directionally sheared them across surfaces of varying roughness and compliance in wet conditions while measuring force. In multiple surface and shearing conditions, elliptical and teardrop shapes outperformed the circle, which suggests that disc shape and distribution of stiffness may play an important role in resisting shear. Additionally, incorporating a soft rim increased cup performance on rougher substrates, highlighting interactions between the cup materials and surfaces asperities. To better understand how these cup designs may resist shear, we also utilized a visualization technique (frustrated total internal reflection; FTIR) to quantify how contact area evolves as the cup is sheared.