Invasive aspergillosis (IA) represents a leading cause of mortality in immunocompromised patients. Although adoptive immunotherapy with Aspergillus-specific T cells (Asp-STs) represents a promising therapeutic approach against IA, the complex and costly production limits its broader application. We generated Asp-STs from a single blood draw of healthy individuals or IA patients in only 10 days, by either Aspergillus fumigatus (AF) lysate or peptide stimulation of mononuclear cells. The cells were phenotypically and functionally characterized, and safety was assessed in xenografts. Healthy donorderived and lysate-or peptide-pulsed Asp-STs presented comparable fold expansion, immunophenotype, and Th1 responses. Upon cross-stimulation, only the lysate-pulsed Asp-STs were empowered to respond to peptide stimulation, although both cell products induced hyphal damage. Importantly, Asp-STs cross-reacted with other fungal species and did not induce alloreactivity in vivo. IA patient-derived T cells displayed an anergic phenotype that prohibited sufficient expansion and yield of meaningful doses of Asp-STs for autologous immunotherapy. Using a rapid and simple process, we generated, from healthy donors but not IA patients, functionally active Asp-STs of broad specificity and at clinically relevant numbers. Such an approach may form the basis for the effective management of IA in the context of allogeneic hematopoietic cell transplantation.