The intersection of two fields, oxide surface science and scanning probe microscopy (SPM), has yielded considerable insight on atomic processes at surfaces. Oxide surfaces, especially those containing transition metals, offer a rich variety of structures and localized physical phenomena that are exploited in a wide range of applications. Nonlinear optics, superconductivity, ferroelectricity and chemical catalytic activity are but a few. Furthermore, the challenges and solutions associated with the chemistry of these surfaces and particularly the solutions to these problems have led to important understanding of tip-surface interactions that can inform SPM studies of all materials. Here, the development of understanding of the model systems TiO 2 and SrTiO 3 are considered in detail, to demonstrate the role of nonstoichiometry in surface structure evolution and the approach to interpreting structure at the atomic level. Then a combination of scanning tunneling microscopy, noncontact atomic force microscopy and theory are applied to a variety of oxide systems including Al 2 O 3 , NiO, ferroelectric BaTiO 3 , tungstates and molybdates. Recently developed sophisticated probes of local properties include spin-polarized tunneling, Fourier mapping of charge density waves, band gap mapping of superconductors and ultra fast imaging of atomic diffusion. The impact of these studies on our understanding of the behavior of oxides and of tip-surface interactions is summarized.