The stochastic resonance (SR) in bistable systems has been extensively discussed with the use of phenomenological Langevin models. By using the microscopic, generalized Caldeira-Leggett (CL) model, we study in this paper, SR of an open bistable system coupled to a bath with a nonlinear system-bath interaction. The adopted CL model yields the non-Markovian Langevin equation with nonlinear dissipation and state-dependent diffusion which preserve the fluctuationdissipation relation (FDR). From numerical calculations, we find the following: (1) the spectral power amplification (SPA) exhibits SR not only for a and b but also for τ while the stationary probability distribution function is independent of them where a (b) denotes the magnitude of multiplicative (additive) noise and τ expresses the relaxation time of colored noise; (2) the SPA for coexisting additive and multiplicative noises has a single-peak but two-peak structure as functions of a, b and/or τ . These results (1) and (2)