We characterized source rupture models with heterogeneous slip of plate-boundary earthquakes in the Japan region. The slip models are inferred from strong-motion, teleseismic, geodetic, or tsunami records. For the identification of asperities in the slip models, we found that the area of subfaults retrieved with slips of >1.5 times the total average slip provides a size approximately equivalent to the characterized asperity by Somerville et al. (1999). We then carried out regression analyses of the size and slip for the rupture area and asperity. The obtained scaling relationship to the seismic moment indicates that rupture area S, average slip D, and combined area of asperities S a are 1.4, 0.4, and 1.2 times larger, respectively, than those of crustal earthquakes. In contrast, the ratios of the size and slip between the asperities and rupture area (S a /S and D a /D) are the same for plateboundary earthquakes as for crustal earthquakes. The above analyses indicate that plate-boundary and crustal earthquakes share similar source characteristics.