2014
DOI: 10.1007/s13524-014-0318-5
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm

Abstract: This article suggests a procedure to derive stochastic population forecasts adopting an expert-based approach. As in previous work by Billari et al. (2012), experts are required to provide evaluations, in the form of conditional and unconditional scenarios, on summary indicators of the demographic components determining the population evolution: that is, fertility, mortality, and migration. Here, two main purposes are pursued. First, the demographic components are allowed to have some kind of dependence. Secon… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
21
0
1

Year Published

2017
2017
2021
2021

Publication Types

Select...
5
4

Relationship

1
8

Authors

Journals

citations
Cited by 33 publications
(26 citation statements)
references
References 48 publications
0
21
0
1
Order By: Relevance
“…Various approaches have been developed to project population characteristics (Booth, 2006;Land, 1986). Stochastic population forecasts have been commonly employed in the last decade (Alkema et al, 2011;Billari, Graziani, & Melilli, 2014;Hyndman & Booth, 2008;Lu, Hao, & Wang, 2009;Raftery, Alkema, & Gerland, 2014). These approaches are generally based on projecting agespecific mortality and fertility rate data, and introducing the projected time series rates in a Leslie matrix model (Lutz & Samir, 2010;Miller, Jensen, & Hammill, 2002;O'Neill, Balk, Brickman, & Ezra, 2001;Ortega & Poncela, 2005;Smit, Kater, Jak, & Van den Heuvel-Greve, 2006;Zeng, Land, Wang, & Gu, 2013).…”
Section: Introductionmentioning
confidence: 99%
“…Various approaches have been developed to project population characteristics (Booth, 2006;Land, 1986). Stochastic population forecasts have been commonly employed in the last decade (Alkema et al, 2011;Billari, Graziani, & Melilli, 2014;Hyndman & Booth, 2008;Lu, Hao, & Wang, 2009;Raftery, Alkema, & Gerland, 2014). These approaches are generally based on projecting agespecific mortality and fertility rate data, and introducing the projected time series rates in a Leslie matrix model (Lutz & Samir, 2010;Miller, Jensen, & Hammill, 2002;O'Neill, Balk, Brickman, & Ezra, 2001;Ortega & Poncela, 2005;Smit, Kater, Jak, & Van den Heuvel-Greve, 2006;Zeng, Land, Wang, & Gu, 2013).…”
Section: Introductionmentioning
confidence: 99%
“…Deja, šiuo metu dar neturime nuodugnių mokslinių diskusijų apie ekspertinių sistemų tinklų kūrimą. Kujszczyk et al (1993) Billari et al (2011), Kelman et al (2002 nuomone, ekspertiniai vertinimai tampa ne tik populiarūs, bet ir veiksnūs. Tačiau ir ekspertų atsakomybė tampa vis didesnė, nes imama spręsti vis sudėtingesnes ir svarbesnes problemas.…”
Section: Stochastiškai Informatyvios Ekspertizės Ypatumaiunclassified
“…Wolfgang Lutz and colleagues were among the first to introduce expert judgments (Lutz et al 1998;Lutz and Goldstein 2004) and to quantify the underlying narrative in argument-based scenarios (Lutz and Scherbov 2003). In recent years, the Bayesian approach has become the leading paradigm in probabilistic forecasting (see, e.g., Bijak (2011); Bijak and Wiśniowski (2010); Azose and Raftery (2015); Billari et al (2014); Disney et al (2015); Bijak et al (2016)). It offers a coherent framework for combining data from different sources, and for assessing the multiple uncertainties in forecasting.…”
Section: Introductionmentioning
confidence: 99%