2009
DOI: 10.1002/env.989
|View full text |Cite
|
Sign up to set email alerts
|

Stochastic search algorithms for optimal design of monitoring networks

Abstract: SUMMARYThe design of efficient monitoring networks is critical for a better understanding of environmental, ecological, and epidemiological processes. In this paper, we develop for the optimal design of monitoring networks a new hybrid genetic algorithm (HGA) which combines the standard genetic algorithm (GA) with a local search (LS) operator. We compare the performance of our HGA with two other stochastic search algorithms, a simulated annealing (SA) algorithm and a standard GA. Specifically, we consider the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
20
0

Year Published

2010
2010
2017
2017

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 32 publications
(20 citation statements)
references
References 25 publications
0
20
0
Order By: Relevance
“…This optimization methodology is used, for example, in problems of rationalization of environmental monitoring network stations (Ruiz-Cárdenas et al, 2010).…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…This optimization methodology is used, for example, in problems of rationalization of environmental monitoring network stations (Ruiz-Cárdenas et al, 2010).…”
Section: Introductionmentioning
confidence: 99%
“…However, metaheuristic strategies are used in artificial intelligence, such as the simulated annealing algorithm (Costa Filho et al, 2010;Guedes et al, 2011) and the genetic algorithm (Chakrapani and Rajan, 2008;Ruiz-Cárdenas, 2010, Guedes et al, 2011, which use an iterative search method to determine the optimal solution.…”
Section: Introductionmentioning
confidence: 99%
“…Thus, the question of how to best sample airborne pollutants in a monitoring network is nontrivial. Over the last two decades or so, an increasing amount of research has been oriented towards optimal network design, particularly in the area of air quality, for example, Caselton and Zidek (1984); Haas (1992); Pe´rez-Abreu and Rodrı´guez (1996); Zidek et al (2000); Chow et al (2002); Elkamel et al (2008); Pesch et al (2008); Ruiz-Ca´rdenas et al (2010); Zidek and Zimmerman (2010); Saunier et al (2011);Wu and Bocquet (2011);RuizCa´rdenas et al (2012).…”
Section: Introductionmentioning
confidence: 99%
“…Different objectives of optimization for designing monitoring network include minimisation of prediction variance (McKinney and Loucks 1992; Asefa et al 2004Asefa et al , 2005Nunes et al 2004a, b, c;Herrera and Pinder 2005;Ammar et al 2008;Chadalavada and Datta 2008;Dokou and Pinder 2009;Ruiz-Cardenas et al 2010;Chadalavada et al 2011), contaminant detection (Massmann andFreeze 1987a, b;Meyer and Brill 1988;Hudak andLoaiciga 1992, 1993;Datta and Dhiman 1996;Mahar and Datta 1997;Storck et al 1997;Montas et al 2000;Reed et al 2000;Reed and Minsker 2004;Dhar and Datta 2007;Kollat et al 2008; Bashi-Azghadi and Kerachian 2010), minimisation of monitoring cost (Reed et al 2000(Reed et al , 2003Nunes et al 2004a;Reed and Minsker 2004;Wu et al 2006;Kollat and Reed 2007;Kollat et al 2008Kollat et al , 2011, minimisation of mass estimation error (Montas et al 2000;Reed and Minsker 2004;Wu et al 2005Wu et al , 2006Kollat and Reed 2007) etc. Masoumi and Kerachian (2010) applied an entropy theory for the redesign of optimal groundwater quality monitoring networks.…”
Section: Optimal Compliance Monitoring and Feed-back Informationmentioning
confidence: 99%