Abstract:The storage capacity of an incremental learning algorithm for the parity machine, the Tilinglike Learning Algorithm, is analytically determined in the limit of a large number of hidden perceptrons. Different learning rules for the simple perceptron are investigated. The usual Gardner-Derrida one leads to a storage capacity close to the upper bound, which is independent of the learning algorithm considered.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.