Please cite this article as: E. Brandley, E.S. Greenhalgh, M.S.P. Shaffer, Q. Li, Mapping carbon nanotube orientation by fast fourier transform of scanning electron micrographs, Carbon (2018), doi: 10.1016/j.carbon.2018.04.063. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
AbstractA novel method of applying a two-dimensional Fourier transform (2D-FFT) to SEM was developed to map the CNT orientation in pre-formed arrays. Local 2D-FFTs were integrated azimuthally to determine an orientation distribution function and the associated Herman parameter. This approach provides data rapidly and over a wide range of lengthscales.Although likely to be applicable to a wide range of anisotropic nanoscale structures, the method was specifically developed to study CNT veils, a system in which orientation critically controls mechanical properties. Using this system as a model, key parameters for the 2D-FFT analysis were optimised, including magnification and domain size; a model set of CNT veils were pre-strained to 5%, 10% and 15%, to vary the alignment degree. The algorithm confirmed a narrower orientation distribution function and increasing Herman parameter, with increasing pre-strain.To validate the algorithm, the local orientation was compared to that derived from a common polarised Raman spectroscopy. Orientation maps of the Herman parameter, derived by both methods, showed good agreement. Quantitatively, the mean Herman parameter calculated using the polarised Raman spectroscopy was 0.42±0.004 compared to 0.32±0.002 for the 2D-FFT method, with a correlation coefficient of 0.73. Possible reasons for the modest and systematic discrepancy were discussed.