Piezoelectric beam dynamics are characterized by elastic properties, nonlinearities, uncertainties, and unknown disturbances, thus making vibration suppression a challenging control problem. To meet this challenge, a novel active control method has been designed and rigorously tested on actual hardware without the requirement of extensive modeling. In this unique approach, the piezoelectric beam dynamics, known or unknown, linear or nonlinear, and all external disturbances are treated in their totality as an input disturbance which is subsequently estimated and canceled in real time, reducing the challenging problem to a very manageable one. Simulation and experimental results demonstrate the effectiveness of this practical control method. The frequency domain characteristics of the proposed method are analyzed using Bode and describing function methods.