Viruses are small infectious agents that replicate in cells of a host organism and that evolved to use cellular machineries for all stages of the viral life cycle. Here, we critically assess current knowledge on a particular mechanism of persisting viruses, namely, how they tether their genomes to host chromatin, and what consequences arise from this process. A group of persisting DNA viruses, i.e. gamma-herpesviruses and papillomaviruses (PV), uses this tethering strategy to maintain their genomes in the nuclei during cell division. Thus, these viruses face the challenge of viral genome loss during mitosis, as they are transported with the host chromosomes to the nascent daughter nuclei. Incidentally, another group of viruses, certain retroviruses and PV, have adopted this tethering strategy to deliver their genomes into the nuclei of dividing cells during cell entry. By exploiting a phase in the cell cycle when the nuclear envelope is disassembled, viruses bypass the need to engage with the nuclear import machinery. Recent reports suggest that tethering may induce severe cellular consequences that involve activation of mitotic checkpoints, causing missegregation of host chromosomes and genomic instability, which may contribute to cancer.