A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies.
Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei.
BackgroundThe yeaZ gene product forms part of the conserved network YjeE/YeaZ/YgjD essential for the survival of many Gram-negative eubacteria. Among other as yet unidentified roles, YeaZ functions as a resuscitation promoting factor required for survival and resuscitation of cells in a viable but non-culturable (VBNC) state.Methodology/Principal FindingsIn order to investigate in detail the structure/function relationship of this family of proteins we have performed X-ray crystallographic studies of Vibrio parahaemolyticus YeaZ. The YeaZ structure showed that it has a classic actin-like nucleotide-binding fold. Comparisons of this crystal structure to that of available homologues from E. coli, T. maritima and S. typhimurium revealed two distinctly different modes of dimer formation. In one form, prevalent in the absence of nucleotide, the putative nucleotide-binding site is incomplete, lacking a binding pocket for a nucleotide base. In the second form, residues from the second subunit complete the nucleotide-binding site. This suggests that the two dimer architectures observed in the crystal structures correspond to a free and a nucleotide-bound form of YeaZ. A multiple sequence alignment of YeaZ proteins from different bacteria allowed us to identify a large conserved hydrophobic patch on the protein surface that becomes exposed upon nucleotide-driven dimer re-arrangement. We hypothesize that the transition between two dimer architectures represents the transition between the ‘on’ and ‘off’ states of YeaZ. The effect of this transition is to alternately expose and bury a docking site for the partner protein YgjD.Conclusions/SignificanceThis paper provides the first structural insight into the putative mechanism of nucleotide regulation of YeaZ through dimer reorganization. Our analysis suggests that nucleotide binding to YeaZ may act as a regulator or switch that changes YeaZ shape, allowing it to switch partners between YjeE and YgjD.
Viruses are small infectious agents that replicate in cells of a host organism and that evolved to use cellular machineries for all stages of the viral life cycle. Here, we critically assess current knowledge on a particular mechanism of persisting viruses, namely, how they tether their genomes to host chromatin, and what consequences arise from this process. A group of persisting DNA viruses, i.e. gamma-herpesviruses and papillomaviruses (PV), uses this tethering strategy to maintain their genomes in the nuclei during cell division. Thus, these viruses face the challenge of viral genome loss during mitosis, as they are transported with the host chromosomes to the nascent daughter nuclei. Incidentally, another group of viruses, certain retroviruses and PV, have adopted this tethering strategy to deliver their genomes into the nuclei of dividing cells during cell entry. By exploiting a phase in the cell cycle when the nuclear envelope is disassembled, viruses bypass the need to engage with the nuclear import machinery. Recent reports suggest that tethering may induce severe cellular consequences that involve activation of mitotic checkpoints, causing missegregation of host chromosomes and genomic instability, which may contribute to cancer.
Human papillomaviruses (HPVs) utilize an atypical mode of nuclear import during cell entry. Residing in the Golgi apparatus until mitosis onset, a subviral complex composed of the minor capsid protein L2 and viral DNA (L2/vDNA) is imported into the nucleus after nuclear envelope breakdown by associating with mitotic chromatin. In this complex, L2 plays a crucial role in the interactions with cellular factors that enable delivery and ultimately tethering of the viral genome to mitotic chromatin. To date, the cellular proteins facilitating these steps remain unknown. Here, we addressed which cellular proteins may be required for this process. Using label-free mass spectrometry, biochemical assays, microscopy, and functional virological assays, we discovered that L2 engages a hitherto unknown protein complex of Ran-binding protein 10 (RanBP10), karyopherin alpha2 (KPNA2), and dynein light chain DYNLT3 to facilitate transport towards mitotic chromatin. Thus, our study not only identifies novel cellular interactors and mechanism that facilitate a poorly understood step in HPV entry, but also a novel cellular transport complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.