To find the kinematic model in applications different from robotics, the free-body diagram and coordinateconversion using Euler angles is frequently used. In robotics the Khalil-Kleinfinger (1986) method is used(and others), which allows coordinate conversions over several joints. In this paper a new application ofthis method to solve the fire control problem of a naval anti aircraft gun is proposed. To demonstrate theapplication a virtual model is built using Virtual Reality Modeling Language (VRML) and controlledby Matlab Simulink®. From the direct geometric model the solution of the problem is found, includingthe detection system, platform, gun and flight of the missile. This model serves as a tool for the design,testing and integration of controllers for the gun and detection system. The prediction algorithms ofthe trajectory of the target and the missile in flight models can also be integrated. The results show thatthe geometric model of complex systems with many degrees of freedom can be constructed in a precise,methodical and easy to understand manner.