The potential for using Adeno-associated virus (AAV) as a vector for human gene therapy has stimulated interest in the Dependovirus genus. Serologic data suggest that AAV infections are prevalent in humans, although analyses of viruses and viral sequences from clinical samples are extremely limited. Molecular techniques were used in this study to successfully detect endogenous AAV sequences in 18% of all human tissues screened, with the liver and bone marrow being the most predominant sites. Sequence characterization of rescued AAV DNAs indicated a diverse array of molecular forms which segregate into clades whose members share functional and serologic similarities. One of the most predominant human clades is a hybrid of two previously described AAV serotypes, while another clade was found in humans and several species of nonhuman primates, suggesting a cross-species transmission of this virus. These data provide important information regarding the biology of parvoviruses in humans and their use as gene therapy vectors. Adeno-associated virus (AAV) is a member of the genusDependovirus, which lies within the Parvoviridae family (17). An interest in this family of viruses has been stimulated because of their potential use as gene transfer vectors (14).Little is known about the biology of AAV infections, although a significant proportion of humans and nonhuman primates have antibodies in their blood that react to some of the six existing serotypes of AAV (5, 7). This suggests that primates are hosts for infection with AAV, although the clinical sequelae of these infections have yet to be identified.The study of AAV has been limited to the previously described six serotypes, of which five were isolated as contaminants in laboratory preparations of adenoviruses (1,3,16). Our lack of understanding of AAV clinical infections has complicated the search for clinical isolates of the virus. Members of our laboratory recently described a strategy for evaluating latent or persistent AAV genomes from tissues of asymptomatic nonhuman primates through the use of PCR. These studies led to the discovery of two novel AAV serotypes, called AAV7 and AAV8, that have improved properties as vectors for gene therapy (10). In nonhuman primates, AAV sequences were quite prevalent and heterogenous (9).The goal of this study was to determine if latent AAVs exist in humans, and if so, to characterize their structural, serologic, and functional properties. MATERIALS AND METHODSCollection of primate tissues. Our sources of nonhuman primate tissues were described previously (9). Human tissues were collected under two independent IRB protocols approved by the Institutional Review Board of the University of Pennsylvania from either surgical procedures, postmortem examinations, or organ donors through two major national human tissue providers, the Cooperative Human Tissue Network and the National Disease Research Interchange. The human tissues used for this study were comprised of 18 different tissue types that included the colon, liver, lung, spl...
Exosomes are small membrane vesicles that are secreted by a multitude of cell types. The exosomes derived from dendritic cells (Dex), tumor cells (Tex), and malignant effusions demonstrate immunomodulatory functions, and are even under clinical trial for cancer treatments. In this study we report the phase I clinical trial of the ascites-derived exosomes (Aex) in combination with the granulocyte-macrophage colony-stimulating factor (GM-CSF) in the immunotherapy of colorectal cancer (CRC). The Aex isolated by sucrose/D(2)O density gradient ultracentrifugation are 60-90-nm vesicles that contain the diverse immunomodulatory markers of exosomes and tumor-associated carcinoembryonic antigen (CEA). Totally 40 patients (HLA-A0201(+)CEA(+)) with advanced CRC were enrolled in the study, and randomly assigned to treatments with Aex alone or Aex plus GM-CSF. Patients in both groups received a total of four subcutaneous immunizations at weekly intervals. We found that both therapies were safe and well tolerated, and that Aex plus GM-CSF but not Aex alone can induce beneficial tumor-specific antitumor cytotoxic T lymphocyte (CTL) response. Therefore, our study suggests that the immunotherapy of CRC with Aex in combination with GM-CSF is feasible and safe, and thus can serve as an alternative choice in the immunotherapy of advanced CRC.
Although some strategies have been triggered to address the intrinsic drawbacks of zinc (Zn) anodes in aqueous Zn‐ion batteries (ZIBs), the larger issue of Zn anodes unable to cycle at a high current density with large areal capacity is neglected. Herein, the zinc phosphorus solid solution alloy (ZnP) coated on Zn foil (Zn@ZnP) prepared via a high‐efficiency electrodeposition method as a novel strategy is proposed. The phosphorus (P) atoms in the coating layer are beneficial to fast ion transfer and reducing the electrochemical activation energy during Zn stripping/plating processes. Besides, a lower energy barrier of Zn2+ transferring into the coating can be attained due to the additional P. The results show that the as‐prepared Zn@ZnP anode in the symmetric cell can be cycled at a current density of 15 mA cm−2 with an areal capacity of 48 mAh cm−2 (depth of discharge, DOD ≈ 82%) and even at an ultrahigh current density of 20 mA cm−2 and DOD ≈ 51%. Importantly, a discharge capacity of 154.4 mAh g−1 in the Zn/MnO2 full cell can be attained after 1000 cycles at 1 A g−1. The remarkable effect achieved by the developed strategy confirms its prospect in the large‐scale application of ZIBs for high‐power devices.
Purpose: Tumor-derived exosomes are proposed as a new type of cancer vaccine. Heat shock proteins are potentTh1adjuvant, and heat stress can induce heat shock protein and MHC-I expression in tumor cells, leading to the increased immunogenicity of tumor cells. To improve the immunogenicity of exosomes as cancer vaccine, we prepared exosomes from heat-stressed carcinoembryonic antigen (CEA)^positive tumor cells (CEA +
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.