Gyroscopes merit an undeniable role in inertial navigation systems, geodesy and seismology. By employing the optical Sagnac effect, ring laser gyroscopes provide exceptionally accurate measurements of even ultraslow angular velocity with a resolution up to 10−11 rad/s. With the recent advancement of ultrafast fibre lasers and, particularly, enabling effective bidirectional generation, their applications have been expanded to the areas of dual-comb spectroscopy and gyroscopy. Exceptional compactness, maintenance-free operation and rather low cost make ultrafast fibre lasers attractive for sensing applications. Remarkably, laser gyroscope operation in the ultrashort pulse generation regime presents a promising approach for eliminating sensing limitations caused by the synchronisation of counter-propagating channels, the most critical of which is frequency lock-in. In this work, we overview the fundamentals of gyroscopic sensing and ultrafast fibre lasers to bridge the gap between tools development and their real-world applications. This article provides a historical outline, highlights the most recent advancements and discusses perspectives for the expanding field of ultrafast fibre laser gyroscopes. We acknowledge the bottlenecks and deficiencies of the presented ultrafast laser gyroscope concepts due to intrinsic physical effects or currently available measurement methodology. Finally, the current work outlines solutions for further ultrafast laser technology development to translate to future commercial gyroscopes.