This study aims to comprehensively examine the influence of three distinct additives, namely carboxymethyl cellulose (CMC), hydroxypropyl methylcellulose (HPMC), and cellulose nanofibers (CNF), on the performance enhancement of corrugated base paper. For this purpose, steam‐exploded rice straw was treated with varying concentrations (2, 4, 6, 8, and 10 wt%) of CMC, HPMC and CNF. Analysis of the rice straw pre and post expansion, as well as the modified corrugated base paper, was conducted using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TG), tensile performance testing, and scanning electron microscopy (SEM). Results indicated that adding CMC, CNF, and HPMC to corrugated base paper significantly improved bonding between paper layers, particularly at 2 %, 6 %, and 8 % concentrations, respectively. This enhancement notably increased tensile strength and elastic modulus of the corrugated base paper. Tensile performance saw increases of 57.76 %, 59.01 %, and 60.25 %, while elastic modulus showed increments of 52.7 %, 9.4 %, and 136.69 %, respectively. These findings provide valuable insights for the preparation of corrugated base paper and highlight the potential of CMC, HPMC, and CNF in enhancing paper mechanical properties.