The study investigated the possibility of using rape straw and expanded polystyrene for the production of low density particleboards. Particleboards with the core layer made of wood chips or rape straw, partly substituted with polystyrene (7%), were manufactured within the density range of 500 -650 kg/ m 3 , and resinated with MUF resin. Our study confirmed that wood chip-expanded polystyrene (WP) and wood chip-rape straw-expanded polystyrene boards (WRP), of density reduced to 600 kg/m 3 , met the mechanical requirements of the subject standard for boards intended for interior design (including furniture) and used in dry conditions. However, further density reduction required an increased resination of the core layer.
The paper evaluated the possibility of manufacturing wood-based boards from the material left over from sawmill processing of wood. The boards were made from chips created during cant preparation for cutting and sawdust generated during further sawnwood preparation. They were made as one- and three-ply boards with face layers containing industrial microchips. Mechanical properties determined for one-ply boards in a bend test were used as guidelines for manufacturing three-ply boards. The outcomes were much better when the core layer comprised a mix of chips and sawdust than the chips alone. The study also showed that for the assumed technological parameters it is possible to produce three-ply boards with properties meeting the criteria for P2 furniture boards.
A significant part of the work carried out so far in the field of production of biocomposite polyurethane foams (PUR) with the use of various types of lignocellulosic fillers mainly concerns rigid PUR foams with a closed-cell structure. In this work, the possibility of using waste wood particles (WP) from primary wood processing as a filler for PUR foams with open-cell structure was investigated. For this purpose, a wood particle fraction of 0.315–1.25 mm was added to the foam in concentrations of 0, 5, 10, 15 and 20%. The foaming course of the modified PUR foams (PUR-WP) was characterized on the basis of the duration of the process’ successive stages at the maximum foaming temperature. In order to explain the observed phenomena, a cellular structure was characterized using microscopic analysis such as SEM and light microscope. Computed tomography was also applied to determine the distribution of wood particles in PUR-WP materials. It was observed that the addition of WP to the open-cell PUR foam influences the kinetics of the foaming process of the PUR-WP composition and their morphology, density, compressive strength and thermal properties. The performed tests showed that the addition of WP at an the amount of 10% leads to the increase in the PUR foam’s compressive strength by 30% (parallel to foam’s growth direction) and reduce the thermal conductivity coefficient by 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.