An aspherical airborne camera has excellent performance in the field of photoelectric reconnaissance equipment. However, the image plane contrast of the optical system will be reduced by stray light originating from inside or outside of the optical system. In the present work, the self-designed aspheric airborne camera is manufactured with a baffle and vanes to reduce the impact of stray light on the camera imaging quality. TracePro software is used to analyze the stray light and establish an ABg mathematical model based on the scattering intensity measurement. The incident angle of the light parallel to the optical axis is set, and ray tracing is performed on the optical machine model to verify whether it conforms to the optical system design. The results showed that when the incident angle of the light source is greater than 0.5°, the point source transmittance (PST) value drops rapidly, and when the incident angle is 30°, the PST value of the system is in the order of 10−8. Stray light analysis verifies that the self-designed aspheric surface-based camera optomechanical structure has the ability to suppress stray light. The design of the baffle and vanes further enhances the ability of the optical system to suppress stray light, which can provide a reference for the design of a stray light elimination structure.