2022
DOI: 10.1177/13694332221088946
|View full text |Cite
|
Sign up to set email alerts
|

Strength-constrained simultaneous optimization of topology and fiber orientation of fiber-reinforced composite structures for additive manufacturing

Abstract: Additive manufacturing (AM) enables flexible fabrication of lightweight fiber-reinforced composite (FRC) structures with topological optimized geometries and fiber orientations. However, premature failure may occur if the manufactured FRC structure is not properly designed against stress distribution. The present study develops a strength-constrained optimization algorithm by considering the 3D printed filament embedded with fiber to be orthotropic material. The Tsai–Wu criterion is incorporated in the topolog… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 16 publications
(2 citation statements)
references
References 56 publications
0
2
0
Order By: Relevance
“…In this subsection, we provide results from our method and baselines on several additional shapes. The shape designs are inspired by sketches from SketchGraphs [Seff et al 2020], a large-scale dataset of sketches of real-world CAD models, as well as shapes from existing works [Ma et al 2022;Shafighfard et al 2019]. We use a Laplacian regularizer weight 𝑤 lap = 5 × 10 −7 , and the results are shown in Figure 16, with every dotted line a Dirichlet boundary condition.…”
Section: Results On Additional Shapesmentioning
confidence: 99%
See 1 more Smart Citation
“…In this subsection, we provide results from our method and baselines on several additional shapes. The shape designs are inspired by sketches from SketchGraphs [Seff et al 2020], a large-scale dataset of sketches of real-world CAD models, as well as shapes from existing works [Ma et al 2022;Shafighfard et al 2019]. We use a Laplacian regularizer weight 𝑤 lap = 5 × 10 −7 , and the results are shown in Figure 16, with every dotted line a Dirichlet boundary condition.…”
Section: Results On Additional Shapesmentioning
confidence: 99%
“…See Hu [2021] for a survey (called "free material optimization"). The most common approach for orientation optimization is to set density and orientation as design variables and optimize an objective such as compliance [Chu et al 2021;da Silva et al 2020;Jung et al 2022] or the Tsai-Wu failure criterion [Ma et al 2022] with a gradient-based optimizer. To address the checkerboard pattern issue (periodicity of the orientation variables), researchers usually use filtering [Andreassen et al 2011] to smooth the design variable field (e.g., through a weighted average of neighboring elements).…”
Section: Related Work 21 Fiber Orientation Optimization In 3d Printingmentioning
confidence: 99%