We report a chimeric monoclonal antibody (mAb) directed to a neo-epitope that is exposed in the IgG lower hinge following proteolytic cleavage. The mAb, designated 2095-2, displays specificity for IdeS-generated F(ab')₂ fragments, but not for full-length IgG or for closely-related F(ab')₂ fragments generated with other proteases. A critical component of the specificity is provided by the C-terminal amino acid of the epitope corresponding to gly-236 in the IgG1 (also IgG4) hinge. By its ability to bind to IdeS-cleaved anti-CD20 mAb, mAb 2095-2 fully restored antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against WIL2-S cells to the otherwise inactive anti-CD20 IgG1 F(ab')₂ fragment. Similarly, 2095-2 reinstated ADCC against MDA-MB-231 cells to an anti-CD142 IgG1 F(ab')₂ fragment. mAb 2095-2 was also capable of eliciting both CDC and ADCC to IgG4 F(ab')₂ fragments, an IgG subclass that has weaker ADCC and CDC when intact relative to intact IgG1. The in vitro cell-based efficacy of 2095-2 was extended to the in vivo setting using platelets as a cell clearance surrogate. In a canine model, the co-administration of 2095-2 together with IdeS-generated, platelet-targeting anti-CD41/61 F(ab')₂ fragment not only restored platelet clearance, but did so at a rate and extent of clearance that exceeded that of intact anti-CD41/61 IgG at comparable concentrations. To further explore this unexpected amplification effect, we conducted a rat study in which 2095-2 was administered at a series of doses in combination with a fixed dose of anti-CD41/61 F(ab')₂ fragments. Again, the combination, at ratios as low as 1:10 (w/w) 2095-2 to F(ab')₂, proved more effective than the anti-CD41/61 IgG1 alone. These findings suggest a novel mechanism for enhancing antibody-mediated cell-killing effector functions with potential applications in pathologic settings such as tumors and acute infections where protease activity is abundant.